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Detailed three-dimensional measurements of the first vortex pairing of a large plane
mixing layer reveal excitation of several three-dimensional instability modes. Time
evolution in three-dimensional space (x, y, z, t) shows how the two-dimensional rollers
become three-dimensional as they approach each other and that the linear growth
of at least two instability waves leads to a spanwise periodic pairing. The results
are based on phase-locked measurements made in three-dimensional spatial grids,
with a mesh spacing of 8.5% of the fundamental instability wavelength. Spanwise-
uniform, periodic acoustic excitation stabilizes the most probable two-dimensional
natural features – roll-up and first pairing. The second subharmonic is added to
study the effect of alternate streamwise pairing locations on the three-dimensional
characteristics of vortex pairing. Velocities are measured using hot-wire anemometry,
and the coherent structures are reconstructed from the ensemble-averaged vorticity
field.

Vortex pairing is shown to initiate through local ‘bridging’ at the maxima of
periodic spanwise undulations. The undulations result from linear amplification of
various instability modes on pairing rollers having different strengths. Bridging results
from the change of the relative phase between the spanwise undulations of the pairing
rollers from in-phase (due to the initial translative mode) to out-of-phase (due to the
amplification of bulging-like and non-axisymmetric modes). It is found that when
pairing occurs sufficiently far upstream, only axisymmetric waves are amplified and
the evolution results in axisymmetric merging. In contrast, when pairing occurs
sufficiently far downstream, both axisymmetric and non-axisymmetric waves are
amplified and the evolution results in non-axisymmetric merging.

The results indicate that vortex pairing is accompanied by the counter-rotating
pairs of secondary structures (‘streamwise vortices’ or ‘ribs’) located in the mixing-
layer braids and residing in the valleys of the spanwise-roller waves. Time evolution of
these secondary structures shows that they move in the transverse direction, following
the rollers.

1. Introduction
The origin and evolution of mixing-layer coherent structures (large-scale vortical

regions with spatially correlated vorticity) have been studied extensively. The primary
coherent structures (Brown & Roshko 1974; Winant & Browand 1974), also termed
spanwise vortices or rollers, result from the two-dimensional evolution of the mixing
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layer and are initially two-dimensional in the absence of external spanwise per-
turbations. These structures can persist quasi-two-dimensionally to far-downstream
locations after their first pairing (Wygnanski et al. 1979; Tung & Kleis 1996), although
some studies (Chandrsuda et al. 1978) have found that they quickly become three-
dimensional. Breidenthal (1980, 1981) found that when these structures are formed
from a three-dimensional splitter plate, they quickly relax to their characteristic two-
dimensional structure, although their spanwise non-uniformities are amplified as they
are convected downstream. The secondary coherent structures, also termed streamwise
vortices or ‘ribs’ (Hussain 1986), result from the three-dimensional evolution of the
mixing layer (Lin & Corcos 1984; Bernal & Roshko 1986; Metcalfe et al. 1987); they
reside in the braids arranged as counter-rotating pairs. These secondary structures can
become apparent during roll-up (Huang & Ho 1990; Bell & Mehta 1992; LeBoeuf &
Mehta 1996) or during pairing of the rollers (Pierrehumbert & Widnall 1982; Tung
& Kleis 1996), depending on the initial conditions.

Some studies have reported that the rollers can be forced initially to be highly
three-dimensional, having strong streamwise and transverse vorticity components and
thereby losing their identity as spanwise rollers. This is the case for the strong short-
wavelength spanwise forcing used in the experiments of Nygaard & Glezer (1994) and
the simulations of Comte, Lesieur & Lamballais (1992) and Collis et al. (1994). Rogers
& Moser (1992, 1993) and Moser & Rogers (1993) simulated up to three pairings of the
temporally growing mixing layer by applying initial perturbations having different
amplitudes and phases; they found that the resulting evolutions can be diverse,
which explains the diversity of the experimental results. Some experimental studies on
spanwise-unforced plane mixing layers (Estevadeordal & Kleis 1999a, b) have revealed
‘core instabilities’ during first vortex pairing and ‘double-helical’ second pairing.
Studies using artificial spanwise forcing at the splitter plate have shown that the
secondary structures can appear even before the roll-up (Lasheras, Cho & Maxworthy
1986; Lasheras & Choi 1988; Nygaard & Glezer 1991; Bell & Mehta 1993). In
these studies the rollers became three-dimensional as soon as they were generated,
with alternating bending slopes that are consistent with spanwise forcing. Although
most of these studies with three-dimensional rollers found secondary structures in
the braids, some simulations (Schoppa, Hussain & Metcalfe 1995) revealed that
three-dimensional-roller evolution from the bulging mode can occur without these
structures.

Early experimental studies on the spanwise structure of spatially evolving plane
mixing layers (Browand 1966) reported the presence of high frequencies, which were
harmonics of the initial two-dimensional Kelvin–Helmholtz wave. These frequencies
were thought to be produced by secondary instabilities, the evolution of which pro-
duces strong nonlinear distortions and non-periodic spanwise structure. Browand &
Troutt (1980, 1985) later related these frequencies to vortex pairing through ‘branch-
ings, ends, and terminations’ within pairing rollers. The spanwise measurements of
Miksad (1972) showed strong two-dimensionality up to the region where the first
subharmonic of the initial wave was triggered. As the subharmonic grew, three-
dimensional distortions appeared. In agreement with the simulations of Benney &
Lin (1960), Miksad’s (1972) interpretation was that longitudinal vortex structures
along the streamwise direction and secondary instabilities follow the subharmonic
growth. From that point, much attention was given to the spanwise structure of the
mixing layer – especially regarding the primary and secondary coherent-structure
dynamics during pairing. However, elucidation of the processes taking place within
pairing rollers is still lacking. The current study presents a novel view of the first vortex
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pairing, unveils new spanwise characteristics, and correlates observations reported in
previous studies by Browand & Troutt (1980, 1985), Pierrehumbert & Widnall (1982),
Rogers & Moser (1992), Moser & Rogers (1991, 1993), Schoppa et al. (1995), Bell &
Mehta (1992), LeBoeuf & Mehta (1996), Tung & Kleis (1996), and Estevadeordal &
Kleis (1999a, b).

For studying the onset of three-dimensionality, a fine three-dimensional spatial
grid was used (resolution of 8.5% of the fundamental wavelength). The effect of
the streamwise location on the two-dimensionality of the rollers during first pairing
was investigated by introducing the second subharmonic in the acoustic wave; this
generates two vortex pairing configurations at different streamwise locations, each
having rollers of different strengths (Estevadeordal & Kleis 1999c). The second
subharmonic was also introduced because it stabilizes the second pairing, which will
be the focus of a future investigation.

Low-level forcing (maximum 82 dB SPL) provided a two-dimensional known per-
turbation for triggering and stabilizing (Ho & Huang 1982) the most probable events
– roll-up and pairings (Hussain 1986). Forcing localizes the events at fixed stream-
wise distances and, therefore, eliminates the randomness and jitter associated with a
natural mixing layer; it also smears (or eliminates) other types of interactions (e.g.
triplets). As a consequence, the stabilized events take place and evolve at the same
streamwise locations at all times, and flow features can be educed using phase-average
techniques. One of the limitations of phase-averaging is that conclusions regarding
events that are not phase-locked, such as those associated with small scales and
turbulence, should be drawn carefully.

2. Experimental set-up
2.1. Facility and conditions

The study was carried out in the mixing-layer facility of the Turbulent Shear Flow
Laboratory of the University of Houston; this facility was designed to provide a plane,
large, low-speed mixing layer as free as possible from environmental disturbances
and end effects. The two-stream, closed-loop wind tunnel is shown schematically in
figure 1. The mixing layer originates after the two streams merge at the knife edge
of the splitter plate – the end of the splitter wall that separates the two legs of the
tunnel. Because of the large size of the mixing layer, high Reynolds numbers can be
achieved with low free-stream velocities (maximum attainable value is 30 m s−1) and
thick boundary layers that can be maintained laminar for free-stream velocities up
to 15 m s−1 through a boundary-layer control system located at the splitter plate. The
resulting flow is suitable for hot-wire measurements with good spatial resolution. A
traversing system for three-dimensional probe positioning is located on the roof of the
tunnel test section. Traverse movement in all three directions is free of backlash, with
a resolution of 0.0254 mm. The test section extends 1.05 m in the transverse direction
(y), 1.65 m in the spanwise direction (z), and 12 m in the streamwise direction (x).
In the present experiments the velocities of the streams were set one at 5.5 m s−1

and the other at 1.8 m s−1, with zero streamwise pressure gradient. For the high-
and low-speed sides, boundary-layer-displacement thickness was 0.298 and 0.380 cm,
and momentum thickness was 0.108 and 0.165 cm, respectively. Typical r.m.s.-velocity
fluctuation levels in the free-stream region of the test section were ∼ 0.07% of the
mean flow. Under these conditions the natural fundamental frequency of the mixing
layer was 119 Hz (readily observed from the spectrum of the hot-wire signal). The
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Figure 1. Wind-tunnel schematic.

time-averaged streamwise velocity profile of the mixing layer quickly relaxed to a
hyperbolic-tangent distribution in the transverse direction. The momentum thickness
of the stabilized mixing layer increased from 0.15 cm at the roll-up (plateau centred at
13 cm downstream of the knife edge) to 0.45 cm at the first pairing (plateau centred at
30 cm downstream of the knife edge). Based on the velocity difference and the local
momentum thickness, the Reynolds numbers corresponding to these two events are
365 and 1095, respectively.

Velocities were measured using constant-temperature hot-wire anemometry, with a
TSI T1.5 ‘×’ probe connected to a TSI IFA-100 Intelligent Flow Analyzer for signal
conditioning (offset, gain, and low-pass filtering) of the bridge output signal. The
overheat ratio was 1.4. The sensors were made of tungsten wire and were 1.4 mm in
length and 5 µm in diameter. The separation between the wires of the probe was 1 mm.
The probe was oriented with the plane of the wires in the (x, y)-plane for measuring
the streamwise (u) and transverse (v) velocities and was rotated 90◦ to the (x, z)-plane
for measuring the streamwise (u) and spanwise (w) velocities. The hot-wire probe
was calibrated against a Pitot tube in the free-stream region of the tunnel and was
also yaw calibrated to determine the effective angle between the wires. The velocity
measurements were corrected for velocity gradients in the direction normal to the
plane of the wires. When the gradient is non-zero, the effective cooling velocity for
the two wires is different, especially if the velocity gradients are large (such as within
the mixing layer). The correction, based on a first-order Taylor’s series expansion
about a point midway between the wires, was applied for v and w. The gradients were
evaluated by a finite-difference scheme (centered-second-order). The calibration was
performed after the tunnel had been in operation for several hours (typically about 5)
to allow conditions in the tunnel to settle. The temperature was measured and used
to compensate for temperature variations during the experiment (typically < 0.5 ◦C).

The flow was phase-locked with an acoustic wave that also provided the triggering
signal (and reference) for data acquisition. The wave, W (t), was the sum of three
sinusoidal waves – the fundamental and its first and second subharmonics – and had
the following general form:

W (t) = A0 sin(2πft− φ0) + A1 sin(πft− φ1) + A2 sin
(
π 1

2
ft− φ2

)
, (2.1)

where A0, A1 and A2 are the amplitudes and φ0, φ1 and φ2 are the phases of
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the fundamental, the first-subharmonic wave, and the second-subharmonic wave,
respectively. The second subharmonic was used as the phase reference (φ2 = 0).
The fundamental frequency corresponded to the initial instability frequency of the
mixing layer (roll-up), and the first and second subharmonics corresponded to the
frequencies of the first and second pairings, respectively. As explained earlier, in this
study the second subharmonic was used to alter the location of alternate first pairings
(Estevadeordal & Kleis 1999c).

The wave was generated by means of a single-board computer. The printed-circuit
board was connected to a Macintosh computer for programming and data input. A
basic program computed the wave form according to the parameters entered (ampli-
tudes and phases). The program called a machine-language routine that repeatedly
scanned a cycle of the stored wave form to a 12 bit D/A converter. The amplitude of
the analog wave could be changed via a variable-gain output amplifier. The output
signal was connected to a loudspeaker through a power stereo amplifier. One point
in the cycle of the digital wave was used to provide a triggering pulse; its frequency
was the smallest of the wave components (f/4). The design allowed the adjustment
of the amplitudes, frequencies, and phases of the wave components. Variations of
these parameters can lead to different flow patterns. All measurements in the present
study were based on the same amplitudes and phase differences (near zero) for the
three wave components to satisfy the purposes of the investigation (stabilization of
the first vortex pairing as near as possible to the knife edge and at two downstream
locations). As pointed out by Tung (1992), the efficiency of the acoustic excitation in
a close-loop wind tunnel is high, regardless of the location of the source inside the
tunnel. In the present study, the speaker was located 6 m downstream from the tip of
the knife edge – far from the area where the data were taken (within 0.6 m of the tip
of the knife edge) to ensure that the speaker box would not interfere with the flow of
interest. This location also provided a spanwise-uniform (two-dimensional) acoustic
perturbation at the knife edge (the point where the acoustic wave produces a hydro-
dynamic effect); this was verified by checking the wave along the knife edge using a
microphone (the wave amplitude and phase were spanwise uniform within 0.5%). In
addition, the sound level was measured at different locations in the test section, and
it remained spanwise uniform (82 dB SPL at the knife edge). Thus, the acoustic wave
introduced a small spanwise-uniform perturbation in the flow at the knife edge.

The data were acquired by a MASSCOMP MC5400 computer featuring five clocks
for synchronization of the data acquisition, a traversing system, and external triggering
devices. The A/D converter had 16 channels and 12 bits for a voltage range of −10
to +10 V.

2.2. Measurement techniques

The acoustic wave stabilized the flow and set a phase reference for the data acquisition
and ensemble-average (or phase-average) over a number of realizations. Although
the excitation provides stabilization of the flow (events are fixed in time and space),
a larger number of ensembles is needed downstream because of the increase in
flow jitter. The main sources of jitter are the differences in the arrival time of the
structures at the measurement point and the natural differences between realizations
due to transition to turbulence. A flow quantity (u) can be decomposed into a phase-
coherent part (〈u〉) and a phase-random part (ur). Different decompositions of the
ensemble-average of a quantity can be found in Hussain (1986).

The reconstruction of the vorticity field, which was used for the recognition (and
definition) of coherent structures in the flow, was computed from the ensemble-
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averaged velocity field using a centred finite-difference scheme (second order). The
representation of vortical structures through iso-surfaces has been proven to be
proper for mixing-layer studies (Jeong & Hussain 1995). Since detailed and accurate
measurements were sought, the time-evolving velocity field was measured on three-
dimensional spatial grids. A set of samples from all points on the measurement
grid at any given time delay from the trigger represents a snapshot of the velocity
and vorticity fields at that particular phase. The temporal evolution of the spatial
fields is reconstructed from a sequence of phases from all time traces of the grid.
This technique has been used in the past for two-dimensional (Zaman & Hussain
1981; Estevadeordal & Kleis 1999c) and three-dimensional (LeBoeuf & Mehta 1996)
mixing-layer studies. In the present experiments, data were acquired at 20 phases
of the longest period – the second subharmonic – for capturing the two pairing
configurations under study. These two configurations occur during the first and
second half of the second-subharmonic period, respectively. The first grid captures
the passage of two rollers during prepairing (phases indicated as 0–5) and the pairing
that occurs closer to the knife edge (phases 12–17). The second grid captures the
passage of the roller merged closer to the knife edge (merged 1) (phases 1–5) and
the passage of the roller merged farther downstream (merged 2) (phases 12–14).
The relation between the phases of the second-subharmonic cycle and the pairing
locations is discussed in greater detail by Estevadeordal & Kleis (1999c). The present
study focused on the three-dimensional characteristics of the two first vortex-pairing
configurations and the merging configurations that resulted, with emphasis on the
phases indicated above. These phases clearly captured (i) the pairing that occurred
closer to the knife edge and its spanwise variations that occurred during the pairing
process and (ii) the two merging structures that resulted.

The ensemble-averaged vorticity field is displayed through iso-contours and their
interpolated images for two-dimensional presentation and through iso-surfaces for
three-dimensional presentation. In all figures the tick marks on the axes correspond
to the actual measurement grid used in data acquisition. The units are dimensional to
emphasize the physical dimensions of the coherent structures. Non-dimensionalization
can be easily computed by dividing the transverse distances by the high-speed-side
boundary-layer momentum thickness (θH = 0.1 cm), the streamwise and spanwise
distances by the fundamental wavelength (λ0 = 3 cm), and the vorticity by the
maximum time-averaged vorticity (∂U/∂y = 1150 s−1); the length scales are related
through the Strouhal number (θH/λ0 = 0.03). Negative y corresponds to the high-
speed side. The measurement-grid spatial resolution is 0.254 cm in each direction. The
streamwise distance is referenced to the tip of the knife edge of the splitter plate
(x = 0). The number of ensembles is 100 for all cases. The measurement locations are
summarized in table 1.

The spatial uncertainty was taken to be the traverse-motion resolution. The uncer-
tainty in velocity was calculated from the uncertainty of the voltages from the hot wire
(given by the A/D conversion and multiplied by 2 to account conservatively for the
noise) through the calibration curve. The increments in velocity were conservatively
estimated by the maximum vorticity multiplied by the spatial step. The maximum was
that for the spanwise vorticity, 42 s−1. The calculation did not take into account other
factors (assumed to have negligible uncertainty) such as the separation of the wires in
the probe and their angle (bias error was removed), which would increase the value,
and the gain of the AC coupling, which would decrease it. The highest uncertainty in
the estimation of the ensemble-averaged spanwise vorticity was 4% for typical values
of the variables measured.
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First pairing (x× y × z × t) range x (cm) range y (cm) range z (cm) rate (Hz) ensembles

Two-dimensional grid 51× 21× 1× 20 20.57 to 32.77 −1.00 to 3.56 z = 0 400 100
Three-dimensional grids 23× 23× 23× 20 21.34 to 26.92 −2.29 to 3.30 −3.05 to 2.54 595 100

23× 23× 23× 20 26.42 to 32.00 −1.52 to 4.06 −3.05 to 2.54 595 100

Table 1. Measurement conditions
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3. Vortex pairing: interaction of three-dimensional instabilities
Under the present conditions the rollers undergo two distinct first-pairing config-

urations. The second-subharmonic signal changes the location of the first pairing
and allows the study of two pairing configurations (Estevadeordal & Kleis 1999c).
After the roll-up every fourth vortex is more shifted toward the high-speed side
than the others; thus, pairing occurs differently in alternate pairs and at different
downstream distances, as shown in figure 2. This figure displays six frames of a
second-subharmonic cycle. The pairing rollers revolve around each other by mutual
induction with progressive merging. At the pairing locations (∼ 25 cm and 28 cm in
frames (c) and (f ), respectively), defined as the 90◦ position (as in Ho & Huang 1982),
merging is ∼ 50% complete. The merged structure continues to revolve as it travels
downstream in a fashion similar to that of the original rolled-up vortices, including
the two spiraling arms.

The contours also show that the low-speed-side roller is more disorganized than the
high-speed-side roller, especially in the farther downstream pairing (frames (d–f )); it
has a lower peak spanwise vorticity and a slightly larger size. From a two-dimensional
perspective, an explanation is that upon pairing, this ‘older’ roller has been diffusing
for a longer time than the high-speed roller and, thus, has a lower peak vorticity
and a larger size (Estevadeordal & Kleis 1999c). Investigation of the influence on
three-dimensionality as well as the three-dimensional implications of the low-speed
roller being ‘older/weaker’ are objectives of this study. Phase decorrelation could also
influence the ensemble-averaging results if, for example, the pairing configurations
were occurring at very different downstream locations. In the present investigation
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the two pairing configurations occur at very similar downstream locations and are
expected to be equivalently phase-locked.

To study the repeated large-scale events, phase-averaged measurements were made
on the two three-dimensional grids (table 1) that encompass the roll-up and the first
pairings. The grids are streamwise-consecutive and track the rollers from the end of
the roll-up to the end of the first mergings. The measurements on these grids capture
distinct features of the two vortex-pairing locations which, for a given fundamental
and first subharmonic, are changed by the second subharmonic. The results also show
the relative position of the rollers and the secondary structures.

3.1. Roller instabilities

The slight variation between the spanwise sections (e.g. as shown in figure 3a–c) as
well as the almost straight iso-vorticity lines in (y, z) sections through the middle of
the rollers (as shown in figure 3d ) reveal that the rollers are quasi-two-dimensional
initially. However, two small deviations can be seen – the periphery (area with low
iso-vorticity) exhibits mild waviness, and the centre of the core has a small kink (small
perturbation or deviation producing a small continuous curvature on the iso-vorticity
lines) near z = 1.5 cm. The peripheral waviness, corresponding to a very low value
of spanwise vorticity, has a wavelength on the order of 0.5λ0 and is consistent with
amplification of a perturbation on a sinusoidal spanwise wave (translative instability)
and formation of streamwise structures in the braid. Three-dimensional measurements
will most effectively determine the origin of this amplification and its evolution as the
rollers approach each other. The kink is due to an upstream localized perturbation
(small imperfection in the splitter plate). The results of previous studies have indicated
that kinks from defects in the facility amplify the inherent instabilities of the mixing
layer (Jimenez 1983; Bernal & Roshko 1986; Tung & Kleis 1996; Estevadeordal &
Kleis 1999a, b) and that the mixing-layer instabilities tend to seek the preferred sites
provided by the largest perturbations. This was confirmed, for instance, when various
experimental set-ups produced the same instability configurations, although the sites
for preferred growth were different. It is noteworthy that these local perturbations
are small and lead to instabilities, with initial growth being consistent with linear-
theory predictions (Metcalfe et al. 1987; Rogers & Moser 1992). The fact that the
perturbation location is fixed facilitates the eduction of three-dimensional instabilities
through phase-averaging experiments that use two-dimensional forcing only. The
three-dimensional motions occur at specific locations and are also phase-locked. For
example, this permits the study of the streamwise structures of the braid using two-
dimensional forcing (Tung & Kleis 1996). The present results identify, by means of
the spatial grid, the processes by which two-dimensional rollers become increasingly
three-dimensional and the instabilities involved as they approach each other.

Figure 4 shows the spanwise vorticity profiles in the transverse direction for the
roller of figure 3 at eight equally spaced z-locations. The peak values are lower near
the kink location. The profiles are approximately Gaussian, and the area with vorticity
(roller core) ranges from −0.5 to 2.0 cm. The area with a core vorticity that is higher
than ∼ 50% of the peak is called the roller centre; its diameter is ∼ 1 cm at this
stage, and it is denoted by a. The remainder is called the roller periphery and extends
from the centre end to the region with no vorticity; at this stage it has an outside
diameter of ∼ 2.5 cm, is ∼ 0.75 cm thick, and is denoted by b. These two areas serve
as a reference for the slices from the three-dimensional plots presented in this paper.
The waves on the two sides of the periphery of the roller (one centred around y = 0
and the other around y = 1.5 cm) appear to be in-phase and have a very low value
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Figure 3. Initial quasi-two-dimensional rollers preceding pairing. Iso-contours of phase-averaged
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by arrows. Sections indicated by dashed lines.

of vorticity. The dashed lines that indicate z-locations aid the observation that the
peaks and valleys of the two peripheries are in-phase.

The persistence and extent of quasi-two dimensionality at pairing are first presented
through spanwise sections through the rollers as they continue to approach each
other. These sections were chosen to show the spanwise variations for the two pairing
locations (figure 5). Both locations show that at some spanwise locations, pairing is
complete (Ho & Huang 1982) (b and d ), and at others it is not (e.g. a and f ). The
farther downstream pairing (d–f ) appears to be more disorganized than the upstream
pairing (a–c); the vorticity values are also much lower than those associated with the
pairing that occurs closer to the knife edge. Even though there are spanwise variations
during pairing, spanwise sections corresponding to merging (figure 6) indicate that
the resulting merging structure remains quasi-two-dimensional and axisymmetric,
consistent with the results of studies on the inhibition of three-dimensionality growth
during pairing (Metcalfe et al. 1986). However, conclusions regarding this inhibition
should be drawn carefully from these phase-averaged data because small scales could
exist that are not phase-locked. The merging that takes place farther downstream
(d–f ) appears to be less two-dimensional, axisymmetric, and organized than that
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Figure 4. Spanwise-vorticity profiles in the transverse direction for the roller of figure 3 at eight
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the roller ‘periphery’; it extends from the ‘centre’ to the region with no vorticity and at this stage
has an outside diameter of ∼ 2.5 cm and is ∼ 0.75 cm thick (denoted by b). These two areas serve
as a reference for the three-dimensional plots shown later in the paper.

taking place closer to the knife edge (a–c). Three-dimensional measurements will
most effectively reveal the full shape of these structures.

Sections (y, z) through the centre of the pairing at the two locations (figure 7)
display local three-dimensionality. As the two rollers continue to approach each
other and pair, three zones are discerned in the vorticity field – an increasingly wavy
periphery, a merging centre, and the section between these two zones. The processes in
the centre are more vigorous than those in the outer regions because the centre points
attempt to accommodate a new vorticity value (changing rapidly from the original
peripheral value). Diffusion ultimately smooths the merged structure. The waviness
on the periphery of the high-speed-side roller has a wavelength ranging from 1.25 cm
(centre of the figures) to 1.70 cm (upper and lower areas in the figures) – a range of 0.4
to 0.57 times λ0; this result is in good agreement with linear-theory predictions (Rogers
& Moser 1993). Also, the centre of the core of the rollers and the merging zone exhibit
a bulged nature and have a similar wavelength. The centre of the interaction (the new
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centre of the merging structure) exhibits the strongest changes in vorticity – a sign
of three-dimensionality, especially near the area of the largest upstream perturbation
that produced a kink. The merged structure for the pairing that occurs closer to the
knife edge appears to be quasi-two-dimensional (figure 8a). This is supported by the
almost straight vorticity lines and the higher values of vorticity. The pairing that
occurs farther downstream appears to be more disorganized, and evidence of non-
axisymmetric three-dimensional modes (e.g. ‘snake-like’) in the farther downstream
merging (figure 8b) will be presented though three-dimensional iso-surfaces.

Figure 9 displays the spanwise-vorticity profiles in the transverse direction for the
pairing of figure 7(a) (shown interpolated in figure 9a) at eight (b) and twelve (c)
equally spaced z- and y-locations, respectively. The peak values are lower near the
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‘kink’ location (centred at z = 1.5 cm). The area with vorticity ranges from −1 to
3.0 cm (merging roller). The area with a core vorticity that is higher than ∼ 50% of
the peak (merging ‘centre’) has a diameter of ∼ 2.5 cm at this stage and is denoted
by a; the remainder (‘periphery’) extends from the ‘centre’ to the region with no
vorticity; at this stage it has an outside diameter of ∼ 4 cm and is ∼ 1 cm thick
(denoted by b). The roller is displayed as an interpolated image that emphasizes the
two areas that serve as a reference for the slices from the three-dimensional plots
shown later in the paper. The transverse profiles (figure 9c) display the phase relations
of the spanwise waves. Both of the outermost sides of the periphery exhibit in-phase
undulations as seen in figure 9(a). This translates to the opposite phases of the profiles
captured in the constant y-sections, as shown in figure 9(c). The cores that exhibit
bulges are out-of-phase with respect to each other and are shifted out-of-phase with
respect to the periphery waves: the z-locations of their peaks (minima and maxima)
correspond approximately to the z-locations of the valleys of the peripheral waves.
The apparent tilting of the roller with respect to the z-axis accounts for the fact that
the correspondence between the waves is also slightly tilted with respect to the z-axis.

These results support the fact that vortex pairing is spanwise non-uniform (but
periodic) and occurs at different rates of progression in spanwise areas separated by
the most amplified linear-theory wavelengths. While the crests of the nearly periodic
spanwise wave have already merged, the valleys are still in the initial stages of pairing.
Two modes are apparent – translative and bulging. Other modes (e.g. helical) can
become amplified during first pairing if their energy is comparable to that of other
instability modes, especially the strongest two-dimensional mode (first subharmonic).
For instance, this can occur in a delayed pairing that takes place very far down-
stream where the two-dimensional rollers have sufficiently weakened. Since pairing
rollers differ in strength and/or size, each roller is subject to a distinct instability
amplification rate. Linear-theory instability analyses have explained the occurrence of
the instability-mode amplification (Pierrehumbert & Widnall 1982; Moser & Rogers
1993; Schoppa et al. 1995) for equal-strength rollers. Spanwise-forcing experiments
have been very successful in tracking the most amplified translative mode; however,
mode amplification begins at the forcing location (splitter plate) and is always accom-
panied by ‘ribs’ (Lasheras et al. 1986). Experiments more similar to the linear-range
analysis require a spanwise-unforced mixing layer, and evidence of instability-mode
amplification has been reported (in experiments using Taylor’s hypothesis) for the
translative (Tung & Kleis 1996; Estevadeordal & Kleis 1999a), bulging (Estevade-
ordal & Kleis 1999a), and helical (Estevadeordal & Kleis 1999b) modes. In a smoke
visualization study (Chandrsuda et al. 1978), helical pairing was reported but ap-
peared to result from a strong local kink that amplified a non-axisymmetric mode
beyond linear growth at a single location. Instability modes can be identified most
effectively through three-dimensional measurements.

Figures 10–12 show the evolution of the roller core centres (labelled a) during
pairing and merging. The detailed data clearly show that the rollers approaching
each other (i) are quasi-two-dimensional (figure 10), (ii) become wavy as they pair
(figure 11), (iii) pair through ‘bridges’ (transverse connections with spanwise vorticity
between rollers) spanwise quasi-periodically (figure 11), and (iv) merge into a single
structure which is either quasi-two-dimensional (figure 11) or less axisymmetric and
corrugated (figure 12), depending on the pairing location. The structure from the
farther downstream pairing displayed in figure 12 (d–f ) has a ‘snake’-like form. The
wavelength of the non-axisymmetric wave (between 1 and 2 cm) is similar to that
of the axisymmetric modes (translative and bulging), which are amplified in the
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farther upstream pairing location. Amplification of the non-axisymmetric mode can
result from the co-existence of axisymmetric and helical modes in farther downstream
pairing locations and give the structure a ‘snake’-like form.

Assessment of the duration or persistence of two-dimensionality for independent
rollers (without pairing) is under study. Changing the phase of, for instance, the first
subharmonic wave to produce shredding will allow assessment of the distance which
the solitary rollers can travel without becoming three-dimensional. The present results
support the fact that under ideal conditions (meaning absence of perturbations), two
identical two-dimensional rollers can pair spanwise uniformly. However, slight per-
turbations (e.g. local defects) trigger three-dimensional motions that become further
amplified by mutual and self-induced motions. Through the pairing interaction the
rollers lose their two-dimensionality as they approach each other and, at a down-
stream location where they are two-dimensional before pairing, they acquire spanwise
waviness (especially the low-speed-side roller) and pair through the crests of their
waves forming bridges (Estevadeordal & Kleis 1999a). The spanwise periodicity has
a wavelength of ∼ 0.6λ0. This wavelength also persists through the pairing process.
The correspondence of minima and maxima of the waves from the periphery and
centre of the rollers is shown in figure 13 for the pairing that occurs closer to the
knife edge. In the centre of the pairing, the roller centres are initially out-of-phase
(figure 13b). At the end the merging roller (figure 13f ) still has a centre bulged
structure. Figure 14 presents evidence of axial velocities consistent with bulged rollers
during pairing. These velocities are not as high as those reported in other studies
(Schoppa et al. 1995), but a direct comparison between the two studies has not been
made.

It is noteworthy that the initial forcing conditions control the location of the pairing
and, in turn, its three-dimensional characteristics. Forcing, which includes the second
subharmonic, generates two pairing locations and two consecutive merged structures
with peculiar three-dimensionality. A schematic of first roller pairings, based on the
spanwise-vorticity results, is shown in figure 15 for two downstream pairing locations.
It should be noted that the relative phasing of the spanwise waves is altered by
the pairing. Initially the waves of both rollers are in-phase (as in the translative
modes illustrated in figure 9 of Pierrehumbert & Widnall 1982) and become out-
of-phase (similar to the helical modes illustrated in figure 6 of Pierrehumbert &
Widnall 1982) as they pair and merge locally; the present results show that a
change in relative phase occurs and suggest that more than one instability mode
develops simultaneously. Applying three-dimensional perturbations to a periodic row
of vortices, Pierrehumbert & Widnall (1982) found two main instability modes that
involve spanwise core (planar) variations – the aforementioned translative mode and
the helical mode. The translative instability (sinusoidal spanwise translation on the
rollers) has a growth rate only slightly lower than that of the two-dimensional pairing,
and it is often observed; the helical pairing (local twisting of the rollers around each
other) is much less vigorous (lower growth rate) than the two-dimensional pairing
and, thus, is often overridden and seldom observed. Pierrehumbert & Widnall (1982)
studied other instability modes (such as bulging), but these exhibited less growth than
the previous two. They suggested the possibility of physical counterparts to some of
the higher-order modes that involve smaller scales, such as short-wave instabilities.
A study by Schoppa et al. (1995) revealed that the bulging mode can exhibit faster
growth than the others, depending on the initial conditions. Since the core instabilities
depend on the initial conditions and core size and shape, in a practical situation where
the rollers are different (e.g. the low-speed side is ‘weaker’, as explained earlier), these
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modes can initially grow and coexist before being overridden, for instance, by the
strongest two-dimensional pairing. In addition, the secondary structures can play an
important role (see the next section). The present results suggest that the change from
in-phase to out-of-phase of the waviness of the rollers is due to the coexistence of
at least two secondary instabilities. An instability mode different from the translative
mode and similar to bulging is amplified on the rollers just after the translative mode
develops; its effect on the low-speed-side roller is more dramatic. Since the low-speed-
side roller is weaker (less vigorous coherent motion), it does not have sufficient stability
to remain two-dimensional, especially farther downstream; the three-dimensionality
is inhibited through pairing with the stronger high-speed-side roller. For first pairings
that occur farther downstream, a third mode (non-axisymmetric) is also amplified, its
nature and wavelength being consistent with short-wavelength instabilities and helical
modes.

These roller instabilities appear to dictate the evolution of the mixing layer toward
the onset of three-dimensionality and turbulence. The evolution and influence of the
next important flow structures (the secondary structures) will now be discussed.

3.2. Secondary structures

The present study on vortex pairing revealed a number of counter-rotating pairs
of secondary structures that are consistent with the linear-instability wavelength. In
their streamwise-vorticity-evolution study, Tung & Kleis (1996) suggested that the
secondary structures are generated during pairing, simultaneously with the spanwise
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instability on the rollers. They found that only localized patches of streamwise vorticity
having low values (<10% of the spanwise vorticity) exist before pairing and that these
patches are not yet organized into secondary structures. These areas were associated
with the upstream perturbations that produced kinks on the rollers.

The present three-dimensional measurements provide new information regarding
the independence of these secondary structures, how they are affected by the rollers,
their influence on roller instabilities, their physical connection with the rollers, and
how the structures on the shrinking braid disappear between the pairing rollers.

Figure 16 shows the characteristic forms (Metcalfe et al. 1987; Rogers & Moser
1992; Tung & Kleis 1996) of the secondary structures educed from the present meas-
urements. The (x, y) cuts through the centre of the secondary structures (figure 16a, b)
display the typical layered pattern of the streamwise vorticity across the mixing layer
(five layers alternating in sign, with continuous lines and dashed lines representing
positive and negative values of streamwise vorticity, respectively). The streamwise
vorticity at the location corresponding to the spanwise rollers has sign opposite that
of the secondary structures that wrap around them (figure 17a). This means that the
rollers are tilted in alternate fashion; the streamwise vorticity of the rollers is much
weaker than that of the secondary structures. The values of streamwise vorticity
of the secondary structures are much lower than those of the spanwise vorticity
of the rollers, the maximum value being about 10 times lower, and the minimum
value (that of the outer contour) being near zero. Primary and secondary structures
appear connected by their weakest vorticity values, suggesting (at least from these
phase-averaged measurements) that they are not strongly connected at this stage.
Nevertheless, the fact that they have the same spanwise wavelength implies that the
same small perturbations are responsible for the generation of both the roller waves
and the secondary structures.
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wise vorticity (〈ωx〉 s−1): (a) (x, y)-plane at z = −1.524 cm, (b) (x, y)-plane at z = −2.54 cm,
(c) (y, z)-plane at x = 22.6 cm, (d ) (y, z)-plane at x = 23.36 cm. Dashed contours are 〈ωx〉 = −150
to 0 @ 25 s−1; continuous contours are: (a) 〈ωx〉 = 35 to 225 @ 45 s−1, (b) 〈ωx〉 = 0 to 75 @ 25 s−1,
(c, d ), 〈ωx〉 = 0 to 160 @ 25 s−1. High-speed (Uh) and low-speed (Ul) sides indicated. Sections
indicated by dashed lines.

The (y, z) cuts normal to the flow (figure 16c, d ) exhibit ‘quadrupole’ configurations
(Rogers & Moser 1993) formed by structures of different strengths. The planes shown
are cuts through the cores of the pairing rollers and form a set of five columns. The
strongest structures are located near the area where the rollers have the noticeable
kink (figure 17b). It was pointed out previously that as the rollers approach each other,
a wavy pattern is generated in both their periphery and their core that is consistent
with the quadrupole configuration (figure 18). The downstream evolution of this
configuration depends on the strength and induced fields of the different structures
that generate the ‘mini’ mixing layers shown schematically (only the vertical flow
pattern is shown for simplicity) in figure 18(b).

The column of secondary structures between the pairing rollers is a part of the
shrinking braid, which is being compressed in the middle. This braid disappears once
merging is complete. The streamwise vorticity in this braid is patchy and is a source
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Figure 17. Relative position of rollers and secondary structures. (a) Iso-contours of phase-averaged
spanwise vorticity of rollers over the interpolated image of streamwise vorticity of figure 16(a).
(b) Iso-contours of phase-averaged streamwise vorticity of figure 16(c) over interpolated image of
spanwise vorticity of figure 7(a).

of phase-random three-dimensionality during pairing (Tung & Kleis 1996). The roller
waves and alternating-vorticity sign in the quadrupole configuration suggest that the
secondary structures of the shrinking braid disappear into the rollers through tearing.
It should be noted that the inner three-dimensionality of the merging process (e.g.
secondary-structure motion in the shrinking braid) is greatly inhibited by the pairing
rollers that generate a quasi-two-dimensional structure with mainly spanwise vorticity.

The relation of the peripheral wave to the secondary structures of the braid was
displayed by superimposing the streamwise-vorticity contours and the interpolated
image of the spanwise vorticity in figure 17(b). Each pair of counter-rotating secondary
structures resides in a valley of the roller wave, especially in the area far from the kink.
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Figure 18. (a) Schematic of secondary-vorticity ‘quadrupole’ configuration (cut normal to the
streamwise direction through the middle of initial pairing rollers); (b) vertical induced flow patterns;
(c) schematic of relative position of rollers and secondary structures. Wavy line corresponds to
periphery of rollers, and circles correspond to secondary structures. Theoretical spacing is 0.67λ0.
Solid and dashed lines indicate opposite signs, and line thickness indicates different strengths.

Each pair is separated from the next by the crest of the peripheral wave. Thus, the
distance between counter-rotating secondary-vortex pairs corresponds to the spanwise
wavelength of the rollers (shown schematically in figure 18c). The correspondence
between quasi-periodic bridging and streamwise structures indicates that these features
are manifestations of the same three-dimensional instability. This configuration shows
that the areas corresponding to the bridges (where the first contact between pairing
rollers occurs) are three-dimensional, having noticeable spanwise and streamwise
vorticity components. These areas do not correspond to the initial streamwise patches
of the shrinking braid because the initial waves of the rollers are in phase. Thus,
complex three-dimensional events are occurring that involve the induced motion
(figure 18b) and the simultaneous growth and decay of several instabilities (such as
those reported for the rollers), which result in tearing of the secondary structures
upon merging. The secondary structures of the widening braid persist and become
elongated. From the present data it is possible to estimate their size and shape. They
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are inclined with respect to the streamwise direction, forming an angle of about 30◦
at this pairing location and, thus, project a vorticity component onto the y-direction.
For this reason the term secondary structure is preferable to streamwise structure.
Their length is ∼ 5 cm at this location and is obviously dependent on the streamwise
wavelength (which is being doubled).

The above results were corroborated by reconstructing the streamwise vorticity in
longer spanwise domains. For capturing the first pairing, time series were obtained on
the two-dimensional slice normal to the streamwise direction located at x = 22.86 cm.
It should be noted that the streamwise vorticity in a (y, z)-plane computed from
those time series does not require any assumption (such as Taylor’s hypothesis) since
the streamwise-vorticity component does not involve a streamwise derivative. The
results were also used to determine the characteristics (strength and circulation) of
the secondary structures that allow a practical measurement of the collapse parameter
(Lin & Corcos 1984).

Pairs of counter-rotating secondary structures in the (y, z)-plane that cuts through
the cores of the rollers are shown in figure 19(a). Again, the braid is organized in
straight rows and columns, emphasizing its rectangular quadrupole configuration. The
centres of the secondary structures can be joined in straight lines in any direction.
Along these lines the secondary structures are of alternate sign, and every secondary
structure is surrounded by structures of the opposite sign. The most prominent
structures are those in the area of the kink. Figure 19(b) is a line plot of the
streamwise vorticity in the cut as a function of spanwise distance and shows that
for the strongest pair the positive value of streamwise vorticity is higher than the
negative. This asymmetry is determined by the evolution of the flow from the largest
upstream perturbation. The plot also shows that the strength is similar in the other
structures in the row.

For measuring the strength and collapse parameter of the secondary structures,
the circulation is computed by integration of the vorticity values over the area of
a selected vortex. The boundary is carefully selected from the data in such a way
that no negative values are inserted into a positive vortex and vice versa. For this
particular vortex, the circulation is 0.0160 m2 s−1; normalized, this value is 0.0016. The
normalization is the same as that for the spanwise circulation, i.e. normalized by the
product of (i) the initial maximum spanwise vorticity, (∂U/∂y)max, (ii) the sum of the
high and low boundary-layer momentum thickness, θH +θL, and (iii) the fundamental
wavelength, λ0:

Γ ∗x =
Γx

(∂U/∂y)max(θH + θL)λ0

, (3.1)

where Γ ∗x is the normalized value of the circulation Γx and the subscript indicates
the plane in which the curve lies. The circulation of the secondary structures (by the
braid) computed using this method is shown in figure 19(c).

The secondary structures are approximately of circular cross-section, and their
formation can be understood through the collapse mechanism explained by Lin &
Corcos (1984). Their criterion establishes a critical parameter based on strain and
circulation, above which the braid always collapses into compact, nearly axisymmetric
vortices. In fact, the value of the critical parameter is sufficiently low for the braid
to collapse into nearly circular secondary structures under most circumstances. This
condition is more pronounced when a kink is present and also during a strong
interaction such as pairing (spanwise unstable to small perturbations, as shown
previously). An estimate of the collapse parameter (L) is given in Rogers & Moser
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Figure 19. (a) Streamwise vorticity at first pairing (x = 22.86 cm) in (y, z)-plane through centre of
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(1992) as

L =
Γrib

(Sλ2
z)

1−pνp
> 13.1, (3.2)

where p = 0.6825 is a curve-fit parameter from Lin & Corcos (1984), S is the
maximum two-dimensional principal strain rate in the centre of the braid (in z), λz is
the spanwise wavelength, and ν is the viscosity. The probability for collapse increases
primarily with rib circulation and secondarily with Reynolds number and decreases
primarily with spanwise wavelength and secondarily with strain rate. For a secondary
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structure with 0.01 circulation, the estimated value of the parameter would be

L =
0.01

(1000× 0.0162)1−0.6825(1.5× 10−5)0.6828
∼ 30, (3.3)

which is well above the critical value of 13.1; thus, we may assume that ‘ribs’ have
collapsed into compact axisymmetric structures. From figure 19(c) it is obvious that
the circulation values may be even lower than 0.01, in which case the collapse
parameter would be even closer to the computational predictions. The compact and
axisymmetric secondary structures shown in both the (x, y) and the (y, z) sections
are very similar to those from numerical simulations (Metcalfe et al. 1987; Moser &
Rogers 1993) and experiments using Taylor’s hypothesis (Tung & Kleis 1996).

Time evolution of streamwise vorticity is displayed in the three-dimensional iso-
surface plots of figures 20 and 21. The set of frames in figure 20 corresponds to
the frames of figure 11 (the initiation of pairing in the first grid), and the ones in
figure 21 correspond to those figure 12 (the passage of the merged structure in the
second grid). In the first set (figure 20), shown in the same view as the rollers, the
widening (or surviving) braid reveals prominent counter-rotating secondary structures
(positive indicated as a–i). These structures move in the transverse direction as
they follow the revolving motion of the pairing rollers. The structures are being
elongated to approximately twice the fundamental wavelength, as can be inferred
from the right-hand edge of the figures (the high-speed side), which shows that
the length of the structures is at least that of the domain (about two fundamental
wavelengths). The shrinking braid contains remnants of the secondary structures that
are being compressed (positive indicated as d, e, f) and shows prominent connections
near the area of the kink (a larger negative-streamwise-vorticity region near the
positive indicated by d). From the first frame (phase 12) to the last (phase 17), these
shrinking structures evolve from initially secondary structures to a patchy form as
they are compressed into the spanwise merging structure. In the second set (figure 21),
neatly arranged secondary structures associated with the passage of the quasi-two-
dimensional merged spanwise structure (merged 1: frames a–c) cross the domain.
As the new structures enter the domain near the high-speed side, the older ones in
the domain travel toward the low-speed side, carried by the pairing rollers as they
revolve around each other. These features occur in a more disorganized manner (less
organized vorticity in the braid) in frames (d–f ) (merged 2), which correspond to
the more three-dimensional flow of the pairing that is occurring farther downstream.
In all cases the evolution shows that the secondary structures do not move in the
spanwise direction (no meandering), as reported by LeBoeuf & Mehta (1993).

4. Concluding remarks
Detailed three-dimensional measurements on vortex pairing in a large plane mixing

layer revealed novel spanwise characteristics. It was found that the two rollers develop
wavy peripheries as they approach each other and that pairing begins at the crests of
the waves through a change in the relative phase between the waves of each roller.
The spanwise waves were quasi-periodic, with a wavelength approximately between
one-half and one fundamental streamwise wavelength; this corresponds to the most
amplified perturbation waves predicted by linear theory (Pierrehumbert & Widnall
1982; Rogers & Moser 1993; Schoppa et al. 1995).

The spanwise rollers appear to be most susceptible first to the translative instability.
The waviness is initially restricted to the periphery, is in-phase for the pairing rollers,



72 J. Estevadeordal and S. J. Kleis

(a) (d )

(e)(b)

(c) ( f ) 21.34

26.92

x (cm)

Ul Uh

–2.540

2.032

z (cm)

–2.540

2.032

z (cm)

–2.540

2.032

z (cm)

Ul Uh

Ul Uh

21.34

26.92

x (cm)

21.34

26.92

x (cm)

21.34

26.92

x (cm)

21.34

26.92

x (cm)

–2.540

2.032

z (cm)

–2.540

2.032

z (cm)

–2.540

2.032

z (cm)

Ul

Uh

Ul Uh

Ul Uh

y (cm)2.794 –1.778

y (cm)2.794 –1.778

y (cm)2.794 –1.778 y (cm)2.794 –1.778

y (cm)2.794 –1.778

y (cm)2.794 –1.778

21.34

26.92

x (cm)

Figure 20. Iso-surfaces of phase-averaged streamwise vorticity, 〈ωx〉 = 50 s−1 (light) and −50 s−1

(dark), corresponding to frames of figure 11. High-speed (Uh) and low-speed (Ul) sides indicated
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and undergoes amplification as the rollers continue to approach each other. Toward
the 90◦ position, the inner core or centre of the rollers develops bulging-like waves
that are out-of-phase with respect to each other. The out-of-phase waves are similar
to the helical pairing of two planar vortex waves, as defined by Pierrehumbert &
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Widnall (1982). They referred to the pairing as helical because it caused the vortices
to twist around each other. In the present study the pairing was not helical in the first
grid when the rollers remained planar; rather, the bulging axisymmetric mode was
responsible for the out-of-phase roller waves. When the pairing occurred sufficiently
downstream, non-axisymmetric waves developed and caused the merging structure to
be corrugated.

For a sufficiently upstream pairing location, pairing occurred axisymmetrically. It
was found that as the rollers come into contact with each other, their cores exhibit
a mildly bulged nature. Amplification of this bulging mode (especially in the weaker
low-speed-side roller) causes the spanwise waves to change from in-phase to out-of-
phase, and pairing occurs first in the crests of the waves, forming ‘bridges’ between
the rollers. These bridges are three-dimensional, with strong spanwise vorticity. The
most noticeable bridge appeared in the area of the strongest roller kink. The resulting
merged vortex is quasi-two-dimensional (straight axis). When the pairing occurred
sufficiently far downstream, the rollers appeared to be much more corrugated, and
non-axisymmetric modes were also amplified.

Local bridging was accompanied by the engulfment of the secondary counter-
rotating structures of the shrinking braid. The spanwise rollers were streamwise tilted,
with alternating sign of streamwise vorticity along the span. Cross-cuts normal to the
streamwise direction through the spanwise rollers revealed quadrupole configurations
of the streamwise vorticity at the initiation of pairing. In that formation every vortex
is surrounded by vortices of opposite sign, and mini mixing layers are generated in
the middle of each. This is consistent with the sign of the streamwise vorticity and the
tilting of the rollers. The relative position of the two types of structures was shown
by superimposing spanwise and streamwise vorticity fields. The secondary structures
appeared to be separated by the peaks and valleys of the peripheral wave of the roller
cores. Accordingly, the distance between counter-rotating pairs matched the spanwise
wavelength of the rollers. The connection between the secondary and the spanwise
structures occurs on their periphery, as the braid wraps around the spanwise rollers.
Although the vorticity level is lower in the periphery of these structures, the two
types of structures are locked temporally and spatially. Therefore, the phase-averaged
measurements educed both types of structures, although only the two-dimensional
spanwise structures were artificially stabilized.

The origin of the initial instability of the rollers was related to a kink in the rollers
at a specific spanwise location; the kink location was traced back to an upstream
localized perturbation (a small imperfection in the splitter plate). Previous studies
have shown that kinks from defects in the facility amplify the inherent instabilities
of the mixing layer (Jimenez 1983; Bernal & Roshko 1986; Tung & Kleis 1996;
Estevadeordal & Kleis 1999a, b). It is noteworthy that these local perturbations are
small and lead to instabilities, with initial growth being consistent with linear-theory
predictions (Metcalfe et al. 1987; Rogers & Moser 1992). This facilitated phase-
averaged experiments where the three-dimensional motions could be set to occur at
specific locations periodically.

The connection and interaction between the spanwise and streamwise structures
have been investigated and modelled in several studies. Bernal & Roshko (1986)
constructed a model based on a continuous vortex line that connects both structures.
Hussain (1986) suggested that the interaction of orthogonal spanwise and secondary
structures produces three-dimensional turbulence and mixing. Huang & Ho (1990)
found that random small-scale eddies were produced by the interactions between
the merging spanwise structures and the secondary structures. Tung (1992) observed
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turbulent bursting (high-frequency, low-amplitude components) from hot-wire time
traces; bursts appeared first within the core of the merged structure. He suggested that
the complicated flow pattern established by the counter-rotating secondary structures
in the core region was responsible for the bursting. The bursting occurred in a
later stage of pairing when the new merged structure was forming. Schoppa et al.
(1995) suggested that a spanwise core instability corresponding to the bulging mode
is one of the main mechanisms responsible for bursting and turbulence transition.
The present results show that the three-dimensional activity is highest between the
pairing rollers and the more complex shrinking braid; this generates the reported high
frequencies and accounts for the observed bursting. The exact mechanism governing
the disappearance of the shrinking braid into the merging structure is unknown, but
a three-dimensional tearing mechanism is suggested here; this is reinforced by the
fact that the bridges of the local pairing have a strong spanwise vorticity component.
Viscous vortex reconnection (Moser & Rogers 1993) is another three-dimensional
mechanism that may be involved in pairing. Also termed cut-and-connect or cross-
linking (Melander & Hussain 1989), this mechanism requires that opposite-sign
vorticity regions approach each other and form ‘bridges’ (Ashurst & Meiron 1987;
Kida & Takaoka 1987); in this way the spanwise and secondary structures, being
orthogonal to each other, may enhance the chances of reconnection. The present
results show that pairing occurs locally and that bridges (indicated by iso-vorticity
surfaces) connecting different portions of the rollers are formed. However, the relation
of pairing and bridging through reconnection has not been investigated.

The editorial assistance of Ms M. Whitaker of ISSI is greatly appreciated.
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